Blue Eyes



Imagine yourself in a world where humans interact with computers. You are sitting in front of your personal computer that can listen, talk, or even scream aloud. It has the ability to gather information about you and interact with you through special techniques like facial recognition, speech recognition, etc. It can even understand your emotions at the touch of the mouse. It verifies your identity, feels your presents, and starts interacting with you .You ask the computer to dial to your friend at his office. It realizes the urgency of the situation through the mouse, dials your friend at his office, and establishes a connection.

Human cognition depends primarily on the ability to perceive, interpret, and integrate audio-visuals and sensoring information. Adding extraordinary perceptual abilities to computers would enable computers to work together with human beings as intimate partners. Researchers are attempting to add more capabilities to computers that will allow them to interact like humans, recognize human presents, talk, listen, or even guess their feelings.

The BLUE EYES technology aims at creating computational machines that have perceptual and sensory ability like those of human beings. It uses non-obtrusige sensing method, employing most modern video cameras and microphones to identifies the users actions through the use of imparted sensory abilities . The machine can understand what a user wants, where he is looking at, and even realize his physical or emotional states.

The basic idea behind Blue Eyes technology is to give the computer the human power. We all have some perceptual abilities. That is we can understand each others feelings. For example we can understand ones emotional state by analyzing his facial expression. If we add these perceptual abilities of human to computers would enable computers to work together with human beings as intimate partners. The "BLUE EYES" technology aims at creating computational machines that have perceptual and sensory ability like those of human beings.

Theory of Blue Eyes

Based on Paul Ekman's facial expression work, we see a correlation between a person's emotional state and a person's physiological measurements. Selected works from Ekman and others on measuring facial behaviors describe Ekman's Facial Action Coding System (Ekman and Rosenberg, 1997). One of his experiments involved participants attached to devices to record certain measurements including pulse, galvanic skin response (GSR), temperature, somatic movement and blood pressure. He then recorded the measurements as the participants were instructed to mimic facial expressions which corresponded to the six basic emotions. He defined the six basic emotions as anger, fear, sadness, disgust, joy and surprise. From this work, Dryer (1993) determined how physiological measures could be used to distinguish various emotional states.

Six participants were trained to exhibit the facial expressions of the six basic emotions. While each participant exhibited these expressions, the physiological changes associated with affect were assessed. The measures taken were GSR, heart rate, skin temperature and general somatic activity (GSA). These data were then subject to two analyses. For the first analysis, a multidimensional scaling (MDS) procedure was used to determine the dimensionality of the data. This analysis suggested that the physiological similarities and dissimilarities of the six emotional states fit within a four dimensional model. For the second analysis, a discriminant function analysis was used to determine the mathematic functions that would distinguish the six emotional states. This analysis suggested that all four physiological variables made significant, nonredundant contributions to the functions that distinguish the six states.

Moreover, these analyses indicate that these four physiological measures are sufficient to determine reliably a person's specific emotional state. Because of our need to incorporate these measurements into a small, non-intrusive form, we will explore taking these measurements from the hand. The amount of conductivity of the skin is best taken from the fingers. However, the other measures may not be as obvious or robust. We hypothesize that changes in the temperature of the finger are reliable for prediction of emotion. We also hypothesize the GSA can be measured by change in movement in the computer mouse. Our efforts to develop a robust pulse meter are not discussed here.


Since the goal of this work is to explore MAGIC pointing as a user interface technique, we started out by purchasing a commercial eye tracker (ASL Model 5000) after a market survey. In comparison to the system reported in early studies (e.g. [7]), this system is much more compact and reliable. However, we felt that it was still not robust enough for a variety of people with different eye characteristics, such as pupil brightness and correction glasses. We hence chose to develop and use our own eye tracking system [10]. Available commercial systems, such as those made by ISCAN Incorporated, LC Technologies, and Applied Science Laboratories (ASL), rely on a single light source that is positioned either off the camera axis in the case of the ISCANETL-400 systems, or on-axis in the case of the LCT and the ASL E504 systems. Illumination from an off-axis source (or ambient illumination) generates a dark pupil image.

When the light source is placed on-axis with the camera optical axis, the camera is able to detect the light reflected from the interior of the eye, and the image of the pupil appears bright (see Figure 3).

This effect is often seen as the red-eye in flash photographs when the flash is close to the camera lens.

Bright (left) and dark (right) pupil images resulting from on- and off-axis illumination. The glints, or corneal reflections, from the on- and off-axis light sources can be easily identified as the bright points in the iris. The Almaden system uses two near infrared (IR) time multiplexed light sources, composed of two sets of IR LED's, which were synchronized with the camera frame rate. One light source is placed very close to the camera's optical axis and is synchronized with the even frames. Odd frames are synchronized with the second light source, positioned off axis. The two light sources are calibrated to provide approximately equivalent whole-scene illumination. Pupil detection is realized by means of subtracting the dark pupil image from the bright pupil image. After thresholding the difference, the largest connected component is identified as the pupil. This technique significantly increases the robustness and reliability of the eye tracking system. After implementing our system with satisfactory results, we discovered that similar pupil detection schemes had been independently developed by Tomonoetal and Ebisawa and Satoh.






<< back

Labels : IT Dissertation Contents Page Example, IT Management Dissertation Topics, IT Dissertation Topics Ideas, IT Dissertation Topics Information Technology, IT Dissertation, IT Dissertation Examples, IT Dissertation Topics, IT Dissertation Ideas, Write Information Technology Dissertation, Information Technology Thesis Sample, Sample Dissertation Information Technology, Dissertation Report Information Technology, Dissertation Proposal On Information Technology, Dissertation Topics on Information Technology Law, Information Technology Thesis Ideas, Dissertation Health Information Technology

Copyright © Dissertationideas.co.uk 2012 through 2014